Bewegliches Durchschnittliches Modell Matlab
Um Autoregressive Modell zu generieren, haben wir den Befehl aryule () und wir können auch FilterEstimating AR Modell verwenden. Aber wie kann ich generieren MA-Modell Zum Beispiel kann jemand bitte zeigen, wie MA (20) - Modell zu generieren Ich konnte nicht finden, jede geeignete Technik, dies zu tun. Das Rauschen wird aus einer nichtlinearen Abbildung erzeugt. Das MA-Modell wird also über epsilon-Terme zurückgehen. Q1: Wird äußerst hilfreich, wenn der Code und die Funktionsform eines MA-Modells vorzugsweise MA (20) mit dem obigen Rauschmodell gezeigt wird. Q2: Dies ist, wie ich generiert eine AR (20) mit zufälligen Rauschen aber nicht wissen, wie die oben genannte Gleichung als das Rauschen anstelle der Verwendung von rand für beide MA und AR angefragt Aug 15 14 um 17:30 Mein Problem ist die Verwendung von Filter. Ich bin nicht vertraut mit Transfer-Funktion Konzept, aber Sie erwähnt, dass Zähler B39s sind die MA-Koeffizienten, so dass die B sollten die 20 Elemente und nicht A39s. Next, let39s sagen, das Modell hat einen Schnittpunkt von 0,5, können Sie bitte zeigen, mit dem Code, wie ich ein MA-Modell mit 0,5 Intercept erstellen können (wie man das Intercept in den Filter () und mit dem in meiner Frage definierten Frage bitte zu nennen Danke (B, a, X) filtert die Daten im Vektor X mit dem Filter, der durch den Zählerkoeffizientenvektor beschrieben wird, mit dem Filter, der die Zweifel über die Verwendung des Filters gelöst hat B und den Nennerkoeffizientenvektor a. Wenn a (1) ungleich 1 ist, filtert der Filter die Filterkoeffizienten durch a (1). Wenn a (1) gleich 0 ist, gibt der Filter ein error. quot (mathworkshelpmatlabreffilter. html) zurück Der Problembereich, wie ich don39t verstehen, wie man die a, b (Filterkoeffizienten), wenn es ein Intercept von sagen, 0,5 oder Intercept von 1.Could bitte zeigen Sie ein Beispiel von MA mit Filter und ein Non-Null-Intercept mit dem Eingang Die ich in der Question ndash erwähnt habe SKM Aug 19 14 um 17: 45 Ich habe eine Matrix Zeitreihen-Daten für 8 Variablen mit etwa 2500 Punkten (10 Jahre mon-fri) und möchte die Mittelwert, Varianz, Schiefe und Kurtosis zu berechnen Auf gleitender Basis. Lets sagen Frames 100 252 504 756 - Ich möchte die vier Funktionen oben auf über jedem der (Zeit-) Frames, auf einer täglichen Basis zu berechnen, so dass die Rückkehr für Tag 300 in dem Fall mit 100 Tag Frame, wäre Mittelwert Varianz Schiefe Kurtosis aus dem Zeitraum day201-day300 (100 Tage insgesamt). und so weiter. Ich weiß, das bedeutet, ich würde ein Array-Ausgang, und die erste Frame-Anzahl von Tagen wäre NaNs, aber ich kann nicht herausfinden, die erforderliche Indizierung, um diese getan. Jul 23, 2010, 10:31:25 pm »Dies ist eine interessante Frage, weil ich denke, die optimale Lösung ist anders für den Mittelwert, als es für die anderen Beispiel Statistiken ist. Ive lieferte ein Simulationsbeispiel unten, dass Sie durcharbeiten können. Zuerst wählen Sie einige beliebige Parameter und simulieren einige Daten: Für den Mittelwert verwenden Sie Filter, um einen gleitenden Durchschnitt zu erhalten: Ich hatte ursprünglich gedacht, dieses Problem mit conv wie folgt zu lösen: Aber wie PhilGoddard in den Kommentaren darauf hinwies, vermeidet der Filteransatz die Notwendigkeit für die Schleife. Beachten Sie auch, dass Ive gewählt, um die Termine in der Ausgangsmatrix entsprechen die Daten in X so in späteren Arbeit können Sie die gleichen Indizes für beide verwenden. Somit werden die ersten WindowLength-1-Beobachtungen in MeanMA nan sein. Für die Varianz, kann ich nicht sehen, wie man entweder Filter oder conv oder sogar eine laufende Summe verwenden, um die Dinge effizienter zu machen, so dass ich stattdessen die Berechnung manuell bei jeder Iteration: Wir könnten etwas beschleunigen, indem wir die Tatsache, dass wir bereits haben Berechnet den durchschnittlichen gleitenden Durchschnitt. Ersetzen Sie einfach die innerhalb der Schleife Linie in der oben mit: Allerdings bezweifle ich, dies wird viel Unterschied machen. Wenn jemand eine schlaue Weise sehen kann, um Filter oder conv zu verwenden, um die sich bewegende Fensterabweichung zu erhalten, ist sehr interessiert, sie zu sehen. Ich lasse den Fall der Schiefe und Kurtosis auf die OP, da sie im Wesentlichen genau das gleiche wie das Varianzbeispiel sind, aber mit der entsprechenden Funktion. Ein letzter Punkt: Wenn Sie die oben in eine allgemeine Funktion konvertiert wurden, könnten Sie in eine anonyme Funktion als eines der Argumente übergeben, dann hätten Sie eine gleitende durchschnittliche Routine, die für willkürliche Auswahl von Transformationen funktioniert. Endpunkt, Endpunkt: Für eine Sequenz von Fensterlängen, einfach Schleife über den gesamten Code-Block für jede Fensterlänge. Ja, die Filterfunktion ist zwar besser für den Mittelwert - aber das wollte ich für mehrere verschiedene Funktionen tun, nicht nur für den Mittelwert. Nur meine Antwort geschrieben, weil es für mich gearbeitet und ich dachte, es könnte jemand anderem zu helfen. Ndash Dexter Morgan Apr 15 14 um 12: 40Dokumentation ist das unbedingte Mittel des Prozesses, und x03C8 (L) ist ein rationales, unendlich langsames LAG-Operatorpolynom (1 x03C8 1 L x03C8 2 L 2 x2026). Anmerkung: Die Constant-Eigenschaft eines arima-Modellobjekts entspricht c. Und nicht das unbedingte Mittel 956. Durch Wolds-Zerlegung 1. Gleichung 5-12 entspricht einem stationären stochastischen Prozeß, vorausgesetzt, daß die Koeffizienten x03C8i absolut summierbar sind. Dies ist der Fall, wenn das AR-Polynom, x03D5 (L). Stabil ist. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Zusätzlich ist das Verfahren kausal, vorausgesetzt das MA-Polynom ist invertierbar. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Econometrics Toolbox forciert Stabilität und Invertierbarkeit von ARMA Prozessen. Wenn Sie ein ARMA-Modell mit Arima angeben. Erhalten Sie einen Fehler, wenn Sie Koeffizienten eingeben, die nicht einem stabilen AR-Polynom oder einem invertierbaren MA-Polynom entsprechen. Ähnlich erfordert die Schätzung während der Schätzung Stationaritäts - und Invertibilitätsbeschränkungen. Literatur 1 Wold, H. Eine Studie in der Analyse stationärer Zeitreihen. Uppsala, Schweden: Almqvist amp Wiksell, 1938. Wählen Sie Ihr Land
Comments
Post a Comment